34. Synthesis of Macrobicyclic Polyamines by Direct Macrobicyclisation via Tripode-Tripode Coupling

by Bernard Dietrich, Mir Wais Hosseini, Jean-Marie Lehn*, and Richard B. Sessions¹)

Institut Le Bel, Université Louis Pasteur, 4, rue Blaise Pascal, F-67000 Strasbourg²)

(5.XII.84)

The synthesis of five macrobicyclic polyamines 1-5 is described following a route in which the macrobicycle is formed by the coupling of two tripodal subunits. Such a sequence is appreciably shorter than the stepwise construction *via* a macrocycle, and may give higher yields, as illustrated by the case of bis-tren 3, which has been synthesized following both routes.

Introduction. – The very active current research in macrocyclic chemistry has led to the development of numerous procedures for effecting macrocyclization, thus giving access to a great number of new macrocyclic molecules (for recent reviews, see *e.g.* [1] [2]). Extension into the macropolycyclic manifold requires consideration of synthetic strategies for the construction of multibridged frameworks [3]. The first representatives of the simplest category of macropolycycles were the diaza-macrobicycles $N[(CH_2)_n]_3N$ (n > 7) [4] and the diazapolyoxa-macrobicyclic cryptands [5] [6]. These two types of compounds were obtained by a sequential, two-step pathway involving first synthesis of a macrocycle followed by bridging of the latter, both cyclization steps being effected under high dilution conditions. Although, principally, such conditions *must* favour macrocyclization, methods have been sought which would afford acceptable yields in less dilute conditions; this has been realized in particular by using C–N bond formation through (C–X + tosylamine) reaction as closure process [7–9].

stepwise:	$\bigcap_{\mathbf{r}}^{\mathbf{A}} \rightarrow \bigcap_{\mathbf{r}}^{\mathbf{A}} \rightarrow \bigcap_{\mathbf{r}}^{\mathbf{A}}$	internal template:	$) \rightarrow \bigcirc \rightarrow \bigcirc \bigcirc$
tripode coupling			- $ -$
single capping:	€° - ⊖	external template: (variants)	$\overline{\bullet}$ -
double capping:	₀ <u></u> ₀ – <u></u>	(variants)	€ ° - ●
tripode capping	$() - \bigcirc$		
			$\bullet \bigcirc \bullet \rightarrow \bullet \bigcirc \bullet$

Figure. Some synthetic strategies giving access to macrobicyclic molecules. The circles represent groups retained in the final product; the black dots represent external templates temporarily used for construction purposes.

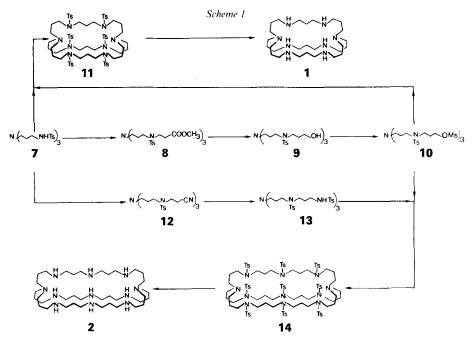
¹) Present address: School of Chemistry, University of Bristol, Bristol BS8 1TS, England.

²) UA 422 of the CNRS.

Several other synthetic strategies may be devised for the construction of macrobicyclic systems, depending on the number of steps, on the nature and number of groups to be condensed, on the use of an internal or of an external template, *etc.* The *Figure* gives a schematic presentation of several approaches to macrobicycle generation [10].

The *stepwise* process requires two cyclization reactions, (each forming two bonds) but generates an intermediate macrocycle, which may also present interesting properties, and allows to introduce three different bridges A, B, and C.

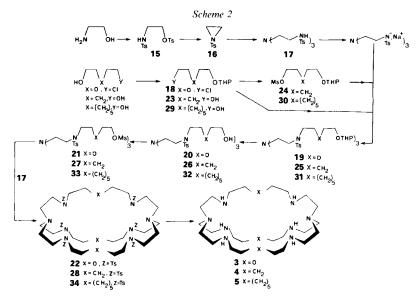
The *tripode coupling* process is a 'one-pot' procedure but could suffer from extensive side reactions since it requires formation of three bonds in a single condensation step; it gives access to 'left-right' dissymetric macrobicycles when two different tripodal subunits A and B, are employed; these compounds conserve a threefold symmetry axis through the bridgehead atoms.


The latter *macrobicyclization* process is the more direct one, provided reagents, reactions, and conditions can be found which give sufficiently high yields. Several such cases have been described, concerning the synthesis of triply bridged cyclophanes [11–15], triphenylmethane [16], and 1,3,5-triazine [17], these reactions are usually of the 'tripode coupling' variety. The cyclotrimerisation of terminal diacetylenes on a *Ziegler* catalyst [11] is of the 'external template – two center' type (*Fig.*, last case, bottom). Twelve-center reactions forming six bonds in a single step, which belong to the 'tripode-capping' type (*Fig.*) afford macrobicyclic cryptands [18a] and templated capping gives sepulchrates [18b]. Triple bridging of C_3 cyclotriveratrylene (CTV) derivatives leads to bis-CTV [19] and speleand [20] macropolycyclic cages.

We report here the synthesis of five macrobicyclic polyamine cryptands 1-5 by coupling of two tripodal subunits *via* triple C–N bond formation through (C-OMs + tosylamine) reactions and without recourse to high-dilution conditions. Compound 3 (bis-tren) has already been synthesized earlier in a stepwise fashion [21]; a similar route has been used for the preparation of related macrobicyclic compounds [22].

Synthesis of the Macrobicycles 1–5. – The reaction sequences followed for synthesizing the macrobicyclic polyamines 1–5 are represented in *Schemes 1* and 2. The key macrobicyclization steps involved the condensation of a tris-terminal tosylamine tripodal subunit with a tris-terminal tripodal mesylate; they were performed in hot dimethylformamide (DMF) in presence of a large excess of $CsCO_3$ [23] or K_2CO_3 and afforded the macrobicyclic polytosylamines 11, 14, 22, 28 and 34 in yields from 20% up to 50%. The preparation of the tripodal reagents, the tosylamines (7, 13, 17) and the mesylates (10, 21, 27, 33), followed a straightforward reaction sequence (*Schemes 1* and 2). The final detosylation step was effected in high yield affording the macrobicycles 1–5.

The interest of the macrobicyclization procedure employed here becomes apparent when the overall yields of the synthesis of bis-tren **3** from commercially available starting materials are compared: 11% for direct macrobicyclization and 4% for the step-by-step sequence described earlier [21]. The former has also the distinct advantage of requiring fewer individual steps than the latter, only nine as compared to fifteen.


Macrobicycle [11.11.11]- N_8 1 (*Scheme 1*). The tricyano compound N(CH₂CH₂CN)₃ 6 was easily obtained by mixing NH₄OAc with acrylonitrile in MeOH/H₂O [24]. Reduction of 6 with LiAlH₄ in the presence of AlCl₃ in THF [25] followed by *in-situ* conversion of the three primary amines to tosylamines afforded compound 7 which was the starting

material for the synthesis of the two macrobicycles 1 and 2. The *Michael* addition of methyl acrylate to tritosylamine 7 gave the triester 8 which was reduced to the triol 9 and then converted into the trimesylate 10. The latter tripode was condensed with tripode 7 at 95° in DMF in the presence of Cs_2CO_3 , yielding the hexatosyl-macrobicycle 11 in 50% yield. The tosyl groups of 11 were removed by a treatment with 30% HBr in AcOH in the presence of a large excess of phenol [26] giving $1 \cdot 8$ HBr. The free macrobicyclic octaamine 1 was obtained by passing $1 \cdot 8$ HBr over a *Dowex* 1×8 resin in its basic form. Compound 1 should be stored under N₂ or kept as its polyammonium salt; the same holds for the other macrobicycles 2–5.

Macrobicycle [15.15.15]- N_{II} 2 (Scheme 1). The Michael addition of acrylonitrile to compound 7 in DMF in presence of K_2CO_3 gave the trinitrile 12. Reduction of 12 with diborane [27] led to the corresponding triamine which was converted into the hexatosylamine 13. Bicyclization between 13 and the trimesylate 10 was achieved at 80° in DMF in presence of a large excess of Cs_2CO_3 yielding the nonatosyl macrobicycle 14 in 27% yield. Removal of the tosyl groups of 14 with HBr/AcOH/phenol as described above gave the hydrobromide salt which may be converted into another salt by anion exchange or into the parent macrobicycle 2.

Macrobicycle [11.11.11]- N_8O_3 3 (Scheme 2). Treatment of 2-aminoethanol with tosyl chloride [28] gave compound 15 which was converted to tosylaziridine 16 in the presence of KOH in toluene [29]. The reaction of 16 with NH₄OAc in a mixture of toluene/MeCN 1:1 at 70° afforded compound 17 which was the starting material for the synthesis of macrobicycle 3-5. Treatment of 'monochloro-diethyleneglycol' with dihydropyran [30] gave the protected alcohol 18 which was condensed with the tris(sodium salt) of 17 leading to 19. Removal of the tetrahydropyranyl group was achieved in the presence of TsOH in EtOH/H₂O 95:5 under reflux [31]. The triol 20 was converted into the trime-

sylate 21. Bicyclization of 17 and 21 was performed in hot DMF in presence of Cs_2CO_3 in large excess, yielding the hexatosyl-macrobicycle 22 in 31% yield. The tosyl groups were removed as described above to give 3.

Macrobicycles [11.11.11]- N_8 - C_5 4 and [15.15.15]- N_8 - C_9 5 (Scheme 2). Monoprotection of 1,5-pentanediol or 1,9-nonanediol with dihydropyran [30] [32] yielded 23 and 29 which were converted into the mesylates 24 and 30, respectively. Reaction of the tris(sodium salt) of 17 with 24 or 30 in DMF gave 25 and 31. Deprotection in EtOH/H₂O 95:5 in the presence of TsOH afforded 26 and 32 which were converted into the trime-sylates 27 and 33. Bicyclization was achieved in DMF as described above leading to the hexatosyl-macrobicycles 28 and 34 in 45% and 23% yield, respectively. Deprotection of 28 and 34 was achieved as described above yielding the macrobicyclic polyamines 4 and 5, which were kept as their polyammonium salts.

Properties of the Macrobicycles 1–5. – Compounds 1–5 are macrobicyclic diamines related both to the polyaza-cryptands [33] and to the macrocyclic polyamines [34] studied earlier. The structures indicated agree with the spectral and analytical data. Furthermore, compound **3** is identical with the same macrobicycle obtained by stepwise synthesis [21].

Structures 1–5 depict the macrobicycles in their *in,in* form, where the bridgehead N-atom sites are directed towards the interior of the molecule. Of course, since nitrogen inversion at an amine center is fast, these compounds are actually present as a rapidly interconverting equilibrium mixture of forms with the bridgeheads directed either *in* or *out*.

Being polyamines, macrobicycles 1–5 may act as ligands either for metal ions when unprotonated or for anions when protonated. Indeed, bis-tren 3 has been shown to form dinuclear cryptates with transition metal ions [21] [35]; on the other hand, its hexaprotonated form binds anions strongly and selectively giving anion cryptates [36]. Similarly, the macrobicycles 1, 2, 4, and 5 present characteristic cation- and anion-binding properties [37]. Such results will be published later.

Experimental Part

General. Melting points (m.p.) are uncorrected ¹H-NMR spectra were recorded on a Varian A60, Varian EM 360A or Bruker SY 200 spectrometer and ¹³C-NMR on a Varian XL 100 or Bruker SY 200 spectrometer. Chemical shifts δ are given in ppm with TMS as the standard. Mass spectra (MS) were performed by the 'Service de spectrométrie de masse', Strasbourg. Microanalysis were performed by the 'Service de microanalyse', Strasbourg.

3,3',3"-Nitrilotripropiononitril (6). NH₄OAc (308 g, 4 mol), acrylonitrile (212 g, 4 mol), MeOH (400 ml), and H₂O (400 ml) were refluxed for 20 h. The mixture was concentrated to 600 ml and extracted with CH₂Cl₂ (600 ml). The CH₂Cl₂ soln. was washed with 2N NaOH (100 ml) and H₂O (100 ml), and dried (MgSO₄). Evaporation left a viscous oil which was taken up in 1 l of hot EtOH. As the soln. cooled, **6** (232.3 g, 33%) crystallized as colourless needles, m.p. 59° ([24]: 57–58°). ¹H-NMR (CDCl₃): 2.53 (t, 3 CH₂N); 2.94 (t, 3 CH₂CN). ¹³C-NMR (CDCl₃): 118.5 (CN); 49.4 (CH₂CH₂CN); 17.2 (CH₂-CH₂-CN). Anal. calc. for C₉H₁₂N₄ (176.21): C 61.34, H 6.86, N 31.79; found: C 61.32, H 6.99, N 31.72.

N,N', N"-Tritosyl-3,3', 3"-nitrilotripropylamine (7). AlCl₃ (51 g, 0.24 mol) was dissolved in dry THF (500 ml) while stirring and cooling (ice bath). This soln. was added to a mixture of LiAlH₄ (12 g, 0.31 mol) and dry THF (200 ml), while cooling (ice bath) and stirring mechanically. To this soln. was added dropwise over 30 min compound **6** (20 g, 0.12 mol) in 200 ml of dry THF. Stirring was continued for another 75 h at r.t. While cooling (ice bath), H₂O (400 ml) was added, cautiously, followed by H₂O (300 ml) sat. with Na₂SO₄. Al(OH)₃ was removed by filtration and the solid was washed with 1.5 l of H₂O. To the filtrate was added K₂CO₃ (90 g), and the soln. was heated to 70° with stirring. An excess TsCl (80 g) was added, and stirring at 70° continued for another 75 h. After cooling, the aq. layer was decanted, and the brown residual oil was dissolved in CH₂Cl₂ (500 ml) and washed with H₂O (500 ml); the aq. layer was extracted with CH₂Cl₂ (1.51), and the org. layers were combined and dried (MgSO₄). Evaporation left a brown oil (50 g). Pure 7 (34 g, 46%) was obtained after chromatography on alumina (700 g) with 2.5% MeOH/CHCl₃; it was crystallized from hot EtOH, m.p. 126°. ¹H-NMR (CDCl₃): 1.55 (br., 3 CH₂CH₂CH₂); 2.25 (br., 3 CH₂N); 2.40 (*s*, 3 CH₃); 2.90 (br., 3 CH₂NTs); 5.9 (br., 3 NH); 7.28, 7.77 (*m*, 12 arom. H). ¹³C-NMR (CDCl₃): 143.9, 137.4, 130.3, 127.7 (arom. C); 52.7 (CH₂N); 42.8 (CH₂NTs); 26.5 (CH₂CH₂CH₂); 22.0 (CH₃). Anal. cale. for C₃₀H₆₃N₄O₆S₃ (650.80): C 55.36, H 6.50, N 8.61; found: C 55.29, H 6.49, N 8.50.

Trimethyl 4,4',4"-*Tritosyl*-7,7',7"-*nitrilotri*(4-azaheptanoate) (8). Compound 7 (10 g, 0.015 mol), methyl acrylate (5 ml), K_2CO_3 (7 g), and DMF (130 ml) were stirred at r.t. for 24 h. After filtration of the white solid, the filtrate was partionned between CH_2Cl_2 (250 ml), H_2O (250 ml), and brine (80 ml). The aq. layer was extracted with CH_2Cl_2 (200 ml) and the org. layers were combined and dried MgSO₄. Evaporation left 15 g of a mixture of 3 compounds. Pure 8 (10.5 g, 75%) was obtained as an oil after chromatography on alumina (350 g) with CH_2Cl_2/Et_2O 1:1. ¹H-NMR (CDCl₃): 1.65 (br., 3 $CH_2CH_2CH_2$); 2.35 (*s*, 3 CH_3); 2.68 (*m*, 3 CH_2CO); 3.3 (*m*, 9 CH_2N); 3.57 (*s*, 3 CH_3); 7.75 (*m*, 12 arom. H). ¹³C-NMR (CDCl₃): 171.5 (CO); 143.3, 136.6, 129.8, 127.1 (arom. C); 51.5, 51.0, 47.4, 44.2 (CH_2N , CH_3); 34.2 (CH_2CO); 26.4 ($CH_2CH_2CH_2$); 21.3 (CH_3). Anal. calc. for $C_{42}H_{60}N_4O_{12}S_3$ (909.10): C 55.48, H 6.65, N 6.17; found: C 55.31, H 6.66, N 6.07.

4,4',4"-Tritosyl-7,7',7"-nitrilotri(4-azaheptanol) (9). LiAlH₄ (3.6 g, 0.092 mol) and dry THF (100 ml) were stirred under Ar at 0°. A soln. of 8 (10.5 g, 0.012 mol) in dry THF (100 ml) was added dropwise within 20 min. The mixture was allowed to come to r.t. and stirred for a further 40 h. A sat. soln. of Na₂SO₄ (100 ml) was added cautiously while cooling (ice bath), the Al(OH)₃ was removed by filtration and washed with THF (500 ml). The filtrates were combined and evaporated leaving a viscous oil which was taken up in CH₂Cl₂ (200 ml) and dried (MgSO₄). Evaporation left 8 g of yellowish oil. Pure 9 (7.45 g, 78% yield) was obtained as an oil after chromatography on alumina (200 g) with 2.5% MeOH/CH₂Cl₂. ¹H-NMR (CDCl₃): 1.8 (br., 6 CH₂CH₂CH₂); 2.45 (*s*, 3 CH₃); 2.88 (br., 3 OH); 3.2 (*m*, 9 CH₂N); 3.75 (*t*, 3 CH₂OH); 7.3, 7.8 (*m*, 12 arom. H). ¹³C-NMR (CDCl₃): 143.6, 136.5, 129.9, 127.3 (arom. C); 59.4 (CH₂OH); 51.6, 47.9, 46.0 (CH₂N); 32.0, 26.6 (CH₂CH₂CH₂); 21.6 (CH₃). Anal. calc. for C₃₉H₆₀N₄O₉S₃ (825.07): C 56.77, H 7.33, N 6.79; found: C 55.71, H 7.27, N 6.66.

4.4'.4"-Tritosyl-7.7'.7"-nitrilotri(4-azaheptyl) Tris(methanesulfonate) (10). Compound 9 (7.42 g, 9 mmol), Et₃N (8.5 ml), and dry CH₂Cl₂ (200 ml) were stirred at 0°. MsCl (2.4 ml, 30 mmol) in dry CH₂Cl₂ (60 ml) was added dropwise over 30 min. The mixture was allowed to come to r.t., and stirring was continued for another 24 h. The orange soln. was washed rapidly with cooled H₂O (150 ml), cooled 1N HCl (100 ml), NaHCO₃ (100 ml), and then dried (MgSO₄). Evaporation gave 10 (9.04 g, 95%) as a pale yellow oil sufficiently pure to be used directly for the cyclisation reactions. Compound 10 is rather unstable; it should be stored below 0° and used within 1 or 2 days. ¹H-NMR (CDCl₃): 1.8 (br., 6 CH₂CH₂CH₂); 2.35 (s, 3 CH₃); 3.0 (s, 3 CH₃); 3.1 (br., 9 CH₂N); 4.25 (t, 3 CH₂O); 7.35, 7.7 (m, 12 arom. H). Anal. calc. for C₄₂H₆₆N₄O₁₅S₆ (1059.33): C 47.61, H 6.28; found: C 46.68, H 6.27.

5,9,17,21,28,32-Hexatosyl-1,5,9,13,17,21,28,32-octaazabicyclo-[11.11.11]pentatriacontane (11). Compound 7 (4.85 g, 7.4 mmol), CsCO₃ (30 g) and DMF (400 ml) were stirred and heated to 95°. To this mixture was added

dropwise over 40 min 10 (7.9 g, 7.4 mmol) in DMF (200 ml). Stirring was continued for another 70 h. The mixture was allowed to come to r.t.; the solid was removed by filtration, and the residue was washed with CH_2Cl_2 (200 ml). The org. layers were combined, evaporated to dryness and the viscous yellow oil was taken up in CH_2Cl_2 (400 ml), washed with 1 N NaOH (200 ml). The aq. layer was extracted 3× with CH_2Cl_2 (200 ml). The org. layers were combined and dried (MgSO₄). Evaporation left a colored solid. Pure 11 (5.3 g, 50%) was obtained as a solid after chromatography on alumina (400 g) with 1% MeOH/CH₂Cl₂ and recrystallized from $CH_2Cl_2/MeOH/EtOH$ as fine white needles, m.p. 110°. ¹H-NMR (CDCl₃): 1.75 (br., 9 CH₂CH₂CH₂); 2.34 (*s*, 6 CH₃); 3.08 (br., 18 CH₂N); 7.3, 7.7 (*m*, 24 arom. H). ¹³C-NMR (CDCl₃): 143.5, 136.2, 129.9, 127.4 (arom. C); 51.9, 47.8, 47.2 (CH₂N); 29.4, 27.1 (CH₂CH₂CH₂); 21.6 (CH₃). MS: 1420 (M^+), 1265 (M^+ – Ts). Anal. calc. for $C_{69}H_{96}N_8O_{12}S_6 \cdot CH_2Cl_2$ (1506.80): C 55.79, H 6.55, N 7.74; found: C 55.86, H 6.79, N 7.73.

1,5,9,13,17,21,28,32-Octaazabicyclo[11.11.11] pentatriacontane (1). Compound 11 (0.73 g, 0.5 mmol), phenol (2 g), and 60 ml of a 33 % HBr/AcOH were heated to 80° for 16 h under a well ventilated hood. After evaporation, the colored residue was taken up in Et₂O (100 ml), and 1 · 8 HBr was isolated as a yellow solid after filtration. This solid was dissolved in H₂O (20 ml) and passed over *Dowex 1* × 8 resin (basic form). The aq. soln. of the free base was acidified to pH 2 with conc. HCl, and the H₂O evaporated. The solid obtained was dissolved in the minimum of H₂O/EtOH 1:1 and abs. EtOH was added until the soln. became cloudy. Crystallization occured after 20 min giving the very hygroscopic 1 · 8 HCl (0.32 g, 90%), m.p. > 250°. ¹H-NMR (D₂O): 2.40 (br., 9 CH₂CH₂CH₂); 3.1 (m, 12 CH2NH₂⁺); 3.3 (m, 6 CH₂NH⁺). ¹³C-NMR (D₂O): 52.1, 45.6 (CH₂N); 23.9, 21.9 (CH₂CH₂CH₂). Anal. calc. for C₂₇H₆₀N₈ · 8 HCl · H₂O (806.51): C 40.20, H 8.75, N 13.89; found: C 40.40, H 8.61, N 13.65.

The salt 1 ·8 TsOH was obtained by addition of TsOH (1.3 g, 6.8 mmol) to the free base (0.33 g, 0.66 mmol) in soln. in H₂O. After evaporation, the residue was dissolved in MeOH/EtOH 1:1 and Et₂O was added until the soln. became cloudy, m.p. > 250°. ¹H-NMR (D₂O): 2.03 (br., 3 CH₂CH₂CH₂); 2.27 (br., 6 CH₂CH₂CH₂); 2.43 (s, 8 CH₃); 3.13, 3.45 (br., 18 CH₂N); 7.4, 7.7 (m, 32 arom. H). ¹³C-NMR (D₂O): 144.2, 139.0, 131.1, 126.8 (arom. C); 52.2, 45.5, 45.2 (CH₂N); 22.3, 22.0, 21.9 (CH₂CH₂CH₂). Anal. calc. for C₈₃H₁₂₄N₈O₂₄S₈ (1874.36): C 53.18, H 6.67, N 5.98; found: C 52.79, H 7.06, N 5.88.

4,4',4"-Tritosyl-7,7',7"-nitrilotri(4-azaheptanenitrile) (12). The mixture of 7 (5 g, 7.7 mmol), acrylonitrile (1.65 ml, 25.4 mmol), K_2CO_3 (3.5 g, 25.4 mmol), and 50 ml of DMF was stirred for 64 h at r.t. H_2O (300 ml) and CH_2CI_2 (200 ml) were added, and the aq. phase was washed with CH_2CI_2 (3 × 50 ml). The combined org. layers were dried (Na₂SO₄) and concentrated to 20 ml. This soln. was passed over an alumina column with CH_2CI_2 : 12 (5.8 g, 95%) as a viscous oil. ¹H-NMR (CDCl₃): 1.80 (br., 3 $CH_2CH_2CH_2$); 2.41 (*s*, 3 CH_3); 2.2–3.0 (br. *m*, 3 NCH_2 , 3 CH_2CN); 3.3 (br., 6 CH_2NTs); 7.34, 7.74 (*m*, 12 arom. H). ¹³C-NMR (CDCl₃): 144.6, 136.1, 130.6, 127.9 (arom. C); 118.5 (CN); 51.6 (NCH₂); 48.7, 45.3 (CH₂NTs); 27.4 (CH₂CH₂CH₂); 2.20 (CH₃); 19.5 (CH₂CN). Anal. calc. for $C_{39}H_{51}N_7O_6S_3 \cdot CH_2CI_2$ (810.03): C 53.68, H 5.97, N 10.96; found: C 54.08, H 5.83, N 11.10.

N,N',N",4,4',4"-Hexatosyl-7,7',7"-nitrilotri(4-azaheptylamine) (13). Trinitrile 12 (6 g, 7.4 mmol) and a soln. of B_2H_6 in THF (150 ml, 1.0M) were heated to reflux for 12 h under N₂. After cooling to r.t., MeOH (20 ml) was added carefully to destroy excess B_2H_6 , and the solvents were evaporated. The residue was dissolved in 2.5M HCl/MeOH (200 ml) and refluxed for 3 h. The soln. was evaporated, the residue partitioned between CH_2Cl_2 (150 ml) and 1N NaOH (100 ml), and the aq. layer was further extracted with CH_2Cl_2 (2 × 100 ml) and the org. layers combined, dried (Na₂SO₄), and evaporated giving the crude tetraamine as a viscous oil. To this oil in THF (100 ml)/CH₂Cl₂ (1 ml)/Et₃N (12 ml, 86 mmol), TsCl (4.8 g, 25 mmol) in 10 ml THF was added over 10 min, and the mixture stirred for 12 h at r.t. The solvents were evaporated. The residue was partitioned between CH₂Cl₂ and H₂O. The aq. layer was further extracted with CH₂Cl₂ (2 × 100 ml), and the 20 and H₂O. The aq. layer was further extracted with CH₂Cl₂ (2 × 100 ml), and the org. layers differing pure 13 (5.1 g, 52%) as an oil. ¹H-NMR (CDCl₃): 1.75 (br., 6 CH₂CH₂CH₂); 2.35 (br., 3 NCH₂); 2.40 (s, 6 CH₃); 3.05 (br., 9 CH₂NTs); 5.6 (br., 3 NH); 7.3, 7.7 (m, 24 arom. H). ¹³C-NMR (CDCl₃): 144.1, 143.8, 137.5, 130.4, 127.6 (arom. C); 51.7 (NCH₂); 48.3, 46.8, 40.9 (CH₂NTs); 29.9, 27.2 (CH₂CH₂CH₂); 2.2.1 (CH₃). Anal. calc. for C₆₀H₈₁N₇Ol₂S₆ (1284.66): C 56.02, H 6.35, N 7.63; found: C 55.90, H 6.36, N 7.45.

5,9,13,21,25,29,36,40,44,-Nonatosyl-1,5,9,13,17,21,25,29,36,40,44-undecauzabicyclo[15.15.15]heptatetracontane (14). A mixture of 10 (1.95 g, 1.8 mmol), 13 (2.3 g, 1.8 mmol), $Cs_2CO_3^3$) (20 g, 62 mmol), and DMF (150 ml) was stirred at 80° for 48 h. The solvent was evaporated. The residue was partitioned between CH₂Cl₂ (100 ml) and 1N NaOH (100 ml). The aq. layer was further extracted with CH₂Cl₂ (3 × 100 ml). The org. layers were combined, dried (Na₂SO₄) and evaporated. The residue was passed over an alumina column (120 g), with CH₂Cl₂/toluene 1:1 to give 14 (1 g, 27%) as a viscous oil. ¹H-NMR (CDCl₃): 1.83 (br., 12 CH₂CH₂CH₂); 2.38 (s, 9 CH₃); 3.12 (br., 24

³) The same reaction performed using K₂CO₃ gave only 19% yield.

CH₂N); 7.1, 7.8 (*m*, 36 arom. H). ¹³C-NMR (CDCl₃): 143.4, 136.7, 130.0, 127.4 (arom. C); 51.15, 47.6, 46.8 (CH₂N); 29.3, 26.5 (CH₂CH₂CH₂C; 21.6 (CH₃). MS: 2057 (M^+), 1902 (M^+ – Ts). Anal. calc. for C₉₉H₁₃₅N₁₁O₁₈S₉·C₆H₅CH₃ (2055.68): C 59.27, H 6.71, N 7.17; found: C 59.62, H 6.62, N 7.29.

1,5,9,13,17,21,25,29,36,40,44-Undecaazabicyclo[15.15.15]heptatetracontane (2). The mixture of 14 (0.5 g, 0.25 mmol), phenol (2 g, 21 mmol), and 30 ml of 33 % HBr/AcOH was heated at 80° for 14 h. After evaporation, the colored residue was dissolved in 50 ml H₂O and the soln. was extracted with CH₂Cl₂ (4 × 50 ml). The aq. phase was concentrated to 5 ml and was passed over *Dowex 1* × 8 resin (basic form). The free amine soln. was treated with an excess of HCl. After evaporation of the H₂O, crystallization of 2 · 11 HCl was performed in abs. EtOH (210 mg, 80%), m.p. > 250°. This salt is very hygroscopic. ¹³C-NMR (D₂O): 51.8, 45.9, 45.7 (CH₂N); 23.7, 22.0 (CH₂CH₂CH₂). Anal. calc. for C₃₆H₉₂Cl₁₁N₁₁ · 20 H₂O (1429.48): C 30.25, H 9.31, N 10.78; found: C 30.06, H 9.35, N 10.82.

The salt 2·11 HCl (50 mg) was dissolved in 5 ml H₂O and passed over a *Dowex 1* × 8 resin (basic form). The free amine was treated with 2,4,6-trimethylbenzenesulfonic acid. H₂O was evaporated, the residue dissolved in MeOH (0.5 ml) and the salt precipitated as a white powder by addition of Et₂O/toluene 1:1. Anal. calc. for $C_{135}H_{213}O_{33}N_{11}S_{11} \cdot 11$ H₂O (3069.09): C 52.83, H 7.72, N 5.02; found: C 52.79, H 7.96, N 4.75.

By a similar procedure, 2·11 TsOH was obtained. Anal. calc. for $C_{113}H_{169}O_{33}N_{11}S_{11} \cdot 8 H_2O$ (2562.2): C 50.16, H 6.58, N 5.69; found: C 49.80, H 6.65, N 5.38.

2-(Tosylamino)ethyl p-Toluenesulfonate (15) was synthesized by the procedure described in [28]. To a stirred suspension of TsCl (802.6 g, 4.2 mol) in pyridine (500 ml) cooled to -40° was added dropwise a soln. (cooled to 0°) of 2-aminoethanol (122.2 g, 2 mol) in pyridine (200 ml). After the addition was completed, the temp. was maintained for 1 h at -10° and overnight at 0°. Crushed ice was added, the solid was filtered, washed with H₂O and dissolved in CHCl₃ (1 1), and this solution was washed 3× with H₂O, dried (Na₂SO₄) and evaporated. The solid was dissolved in hot CCl₄ (1.5 1), and 15 crystallized on cooling (550 g, 75%), m.p. 87–88° ([28]: 86–87°). ¹H-NMR (CDCl₃): 2.43 (s, 2 CH₃); 3.20 (q, CH₂N); 4.06 (t, CH₂O); 5.33 (t, NH); 7.35, 7.75 (m, 8 arom. H).

N-Tosylaziridine (16) was synthesized according to the procedure given in [29]. Compound 15 (228 g, 0.61 mol) was suspended in toluene (2 l). To this vigorously stirred mixture, a soln. of KOH (156 g, 2.8 mol) in H₂O (800 ml) was added within 1 h. The stirring was maintained for 2 more h, the mixture decanted, and the org. layer washed $3\times$ with H₂O, dried (Na₂SO₄), and evaporated affording pure 16 (110 g, 99%) as a solid. This compound was used directly for the following step, m.p. 63° ([29]: $63-64^{\circ}$). ¹H-NMR (CDCl₃): 2.36 (s, 2 CH₂); 2.46 (s, CH₃); 7.4, 7.9 (m, 4 arom. H).

N,N',N"-*Tritosyl*-2,2',2"-*nitrilotriethylamine* (17). Aziridine 16 (110 g, 0.56 mol) was dissolved in a toluene/ MeCN 1:1 (400 ml). NH₄OAc (11 g, 0.143 mol) was added to this soln. The mixture was stirred and heated to 70° for 24 h. After evaporation, 17 crystallized from a toluene soln. (80.4 g, 92%), m.p. 108° ([38]: 105–108°). ¹H-NMR (CDCl₃): 2.4 (s + br., 3 CH₃, 3 CH₂NHTs); 2.85 (br., 3 CH₂N); 5.85 (br., 3 NHTs); 7.3, 7.85 (m, 12 arom. H). ¹³C-NMR (CDCl₃): 143.1, 136.7, 129.6, 127.0 (arom. C); 53.9 (CH₂N); 40.7 (CH₂NHTs); 21.3 (CH₃). Anal. calc. for C₂₇H₃₆N₄O₆S₃ (608.8): C 53.27, H 5.96, N 9.20; found: C 53.09, H 6.06, N 9.13.

1-Chloro-5-(tetrahydro-2H-pyran-2-yloxy)-3-oxopentane (18) was synthesized according to the procedure given in [30]. To monochlorodiethyleneglycol (56 g, 0.45 mol) and CH_2Cl_2 (150 ml), a soln. of freshly distilled 2 *H*-dihydropyran (44.8 g, 0.53 mol) in CH_2Cl_2 (50 ml) was added within 30 min while stirring. After the addition was completed, 12 drops of conc. HCl were added, and the soln. was heated for 1 h at 40°. After cooling, K_2CO_3 (10 g) was added, the solvent was evaporated, and the residue dried for 12 h on a vacuum pump giving 18 as an oil (quant. yield). It was used directly for the next step. ¹H-NMR (CDCl₃): 1.65 (br., 3 CH₂); 3.5–4.15 (br. *m*, ClCH₂, 4 OCH₂); 4.7 (br., OCHO).

N,N,N-*Tris*[8-(tetrahydro-2H-pyran-2-yl) axy-3-tosyl-6-ax-3-aza aza ctyl]amine (19). To dry MeOH (200 ml), Na (9.6 g, 0.42 mol) was slowly added in small portions under Ar. When all Na had reacted, 17 (85 g, 0.139 mol) was added, the mixture heated at 50° for 2 h, the solvent evaporated, and the residue dried on a vacuum pump. The Na salt was suspended in dry DMF (400 ml). To this suspension, a soln. of 18 (118 g, 0.56 mol) in DMF (200 ml) was added within 1 h. After addition of K₂CO₃ (10 g), the mixture was heated at 110° for 8 h, the solvent evaporated under vacuum, and the residue taken in CH₂Cl₂ (500 ml) and washed with H₂O (1 i). The aq. layer was further extracted $3\times$ with CH₂Cl₂. The org. layers were combined, dried (Na₂SO₄), then K₂CO₃ (5 g) was added to maintain a basic medium. After evaporation, the crude mixture was triturated $4\times$ with 500 ml of hexane in order to eliminate unreacted 18. The residue was dissolved in toluene/hexane 1:1 and passed over an alumina column (1 kg) with toluene. Pure 19 (106 g, 68%) was obtained as a viscous oil. ¹H-NMR (CDCl₃): 1.65 (br., 9 CH₂); 2.45 (s, 3 CH₃); 2.85 (br., 3 NCH₂); 3.0-4.0 (br. *m*, 6 CH₂NTs, 12 CH₂O); 4.6 (br., 3 OCHO); 7.3, 7.8 (*m*, 12 arom. H). ¹³C-NMR (CDCl₃): 143.2, 137.0, 129.7, 127.2 (arom. C); 99.0 (OCHO); 70.4, 70.1,

66.6, 62.3 (CH₂O); 54.0, 48.9, 47.7 (CH₂N), 30.6, 25.5 (CH₂); 21.5 (CH₃); 19.6 (CH₂). Anal. calc. for $C_{54}H_{84}N_4O_{15}S_3 \cdot \frac{1}{2} C_{6}H_5CH_3$ (1125.4): C 58.91, H 7.51, N 4.79; found: C 58.96, H 7.38, N 4.81.

6,6',6''-*Tritosyl-8,8',8''*-*nitrilotri(3-oxa-6-azaoctanol)* (20). Compound 19 (106 g, 0.094 mol) was treated with conc. HCl (50 ml) in AcOH (800 ml). The mixture was heated at 50° for 12 h, during which the soln. turned dark. After evaporation, toluene was added (3×) and evaporated to eliminate all the acids. The residue was dissolved in CH₂Cl₂ (500 ml), and K₂CO₃ (10 g) was added. After stirring for 12 h, filtration and evaporation of the solvent, the triacetate derivative was obtained as an oil (87 g, 93%): This crude compound was treated by a soln. containing 1N NaOH (150 ml) in MeOH (500 ml). The mixture was heated at 50° for 1 h until TLC showed that all the acetate was saponified. After evaporation, H₂O (200 ml) was added, and the mixture was extracted with CH₂Cl₂ (3 × 200 ml). The solvent was partially removed and the soln. filtered through 100 g of silica gel with 2% MeOH/CH₂Cl₂. After evaporation, the residue was chromatographed on alumina (1.5 kg). Compound **20** was eluted with 1% MeOH/CH₂Cl₂ as a viscous oil. ¹H-NMR (CDCl₃): 2.42 (*s*, 3 CH₃); 2.85 (br., 3 NCH₂); 3.1–3.8 (br. *m*, 6 CH₂NTs, 9 CH₂O); 5.38, 49.1, 47.6 (CH₂N); 21.5 (CH₃). Anal. calc. for C₃₉H₆₀N₄O₁₂S₃ (872.18): C 53.66, H 6.88, N 6.42; found: C 53.90, H 6.94, N 6.15.

6,6',6"-Tritosyl-8,8',8"-nitrilotri(3-oxa-6-azaoctyl) Tris(methanesulfonate) (21). To a stirred soln. of 20 (7.7 g, 8.8 mmol), and Et₃N (22 ml, 160 mmol) in CH₂Cl₂ (300 ml) at 0°, MsCl (2.8 ml, 36 mmol) was slowly added. The mixture was stirred for 1 h at 0° and 2 h at r.t. The soln. was washed successively with 1N HCl (50 ml), 1N NaOH (50 ml), and H₂O (50 ml), dried (Na₂SO₄), and evaporated. The residue was dried on vacuum pump for a few h. The yellow oil 21 (9.7 g, 98%) was used directly for the cyclization step. ¹³C-NMR (CDCl₃): 144.1, 137.1, 130.4, 127.7 (arom. C); 70.5, 69.5, 69.3 (CH₂O); 54.4, 49.4, 48.3 (CH₂N); 38.1 (CH₃Ms); 22.0 (CH₃C₆H₄).

4,10,16,22,27,33-Hexatosyl-7,19,30-trioxa-1,4,10,13,16,22,27,33-octaazabicyclo[11.11.11]pentatriacontane (22). The mixture of 21 (10.95 g, 9.9 mmol), 17 (6.05 g, 9.9 mmol), DMF (500 ml), and K_2CO_3 (50 g, 360 mmol) was well stirred and heated at 80° for 30 h. After cooling, the mixture was filtered, the solid residue washed with CH₂Cl₂, and the filtrate evaporated. The residue was treated with CH₂Cl₂ (300 ml) and 1N NaOH (100 ml). The org. layer was washed with H₂O, dried (MgSO₄), and evaporated. Chromatography of the residue over an alumina column (400 g) with CH₂Cl₂/toluene 3:1 gave pure 22 (4.34 g, 31%) as an amorphous solid which did not crystallize. ¹H-NMR (CDCl₃): 2.4 (s, 6 CH₃); 2.72 (br., 6 CH₂N); 3.24 (br., 12 CH₂NTs); 3.46 (br., 6 CH₂O); 7.30, 7.68 (m, 24 arom. H). ¹³C-NMR (CDCl₃): 143.5, 136.9, 130.0, 127.2 (arom. C); 70.45 (CH₂O); 53.60, 48.90, 47.95 (CH₂N); 21.5 (CH₃). Anal. calc. for C₆₆H₉₀N₈O₁₅S₆ (1427.79): C 55.52, H 6.35, N 7.85; found: C 55.28, H 6.30, N 7.95. Compound 22 was identical (¹H-NMR, ¹³C-NMR, TLC) with the hexatosylated compound obtained earlier in this laboratory via step-by-step synthesis [21].

7,19,30-Trioxa-1,4,10,13,16,22,27,33-octaazabicyclo[11.11.11]pentatriacontane (3). A mixture of 22 (2.6 g, 1.8 mmol), phenol (4 g, 34 mmol), and 33 % HBr/AcOH (70 ml) was heated at 80° for 16 h. After cooling, the soln. was evaporated, the residue taken up in H₂O (50 ml) and CH₂Cl₂ (100 ml), and the aq. phase extracted with CH₂Cl₂ (4 × 100 ml) to eliminate the phenol, evaporated, and dried at the vacuum pump for 12 h. The residue was passed over a *Dowex 1* × 8 resin (basic form). The aq. phase of the free octaamine was evaporated giving 3 (87%) which turned yellow rapidly. It was transformed into polyammonium salts by addition of the appropriate acid. Several such salts have already been described and studied: *e.g.* the chloride, bromide, and perchlorate. ¹H-NMR (D₂O; perchlorate salt): 2.9 (br. *t*, 6 NCH₂CH₂); 3.35 (br., NCH₂CH₂NHCH₂CH₂O); 3.9 (*t*, 6 CH₂O). ¹³C-NMR (D₂O; chloride salt): 66.25 (CH₂O); 50.30 (NCH₂); 48.30, 45.55 (NCH₂CH₂NHCH₂CH₂O).

5-[(Tetrahydro-2H-pyran-2-yl)oxy]pentanol (23). To a stirred mixture of 1,5-pentanediol (100 g, 0.96 mol) and conc. HCl (30 drops), 3,4-dihydro-2H-pyran (26.92 g, 0.32 mol) was added dropwise. The mixture was stirred at r.t. for 48 h. The mono- and diprotected alcohol was extracted into toluene (350 ml), washed with H₂O (100 ml), dried (MgSO₄) and evaporated. Pure 23 (26 g, 14.4%) was obtained as an oil after chromatography on silica gel with AcOEt/hexane 4:6. ¹H-NMR (CDCl₃): 1.6 (br., 2 CH₂CH₂CH₂); 2.25 (br., OH); 3.65 (*m*, 3 CH₂O); 4.60 (br., OCHO). ¹³C-NMR (CDCl₃): 98.9 (OCHO); 67.5, 62.7, 62.4 (CH₂O); 32.5, 30.8, 29.5, 25.5, 22.5, 19.7 (CH₂CH₂CH₂CH₂). Anal. calc. for C₁₀H₂₀O₃ (188.26): C 63.80, H 10.70; found: C 63.99, H 10.69.

5-[(Tetrahydro-2H-pyran-2-yl)oxy]pentyl Methanesulfonate (24). A soln. of 23 (25.52 g, 0.135 mol) in dry CH₂Cl₂ (250 ml) was cooled to -18° and Et₃N (28.5 ml) was added. To the stirred solution, MsCl (11.6 ml) in dry CH₂Cl₂ (120 ml) was added dropwise within 1 h. The mixture was allowed to warm to r.t., and stirring was continued for 2 h. The mixture was washed successively with ice-water (100 ml), cold 10% HCl (100 ml), sat. aq. NaHCO₃ (100 ml), and brine (100 ml). The CH₂Cl₂ layer was dried (MgSO₄) and evaporated to give 24 as an oil (95%) which was used without further purification for the following step. ¹H-NMR (CDCl₃): 1.65 (br., 2 CH₂CH₂CH₂CH₂); 3.05 (s, CH₃); 3.62 (m, 2 CH₂O); 4.25 (t, CH₂OMs); 4.60 (br., OCHO). ¹³C-NMR (CDCl₃): 98.8

(OCHO); 70.1, 67.0, 62.3 (CH₂O); 37.1 (CH₃); 30.7, 29.0, 28.9, 25.4, 22.3, 19.6 (CH₂). Anal. calc. for C₁₁H₂₂O₅S (266.35): C 49.60, H 8.32; found: C 49.76, H 8.38.

N,N,N-*Tris*/8-(*tetrahydro*-2H-*pyran*-2-*yl*)*oxy*-3-*tosyl*-3-*azaoctyl*/*amine* (**25**). A soln. of the tris(sodium salt) of **17** (27 g, 0.040 mol), prepared as described in the preparation of **19**, in DMF (300 ml) was heated at 95°. Then, **24** (32.5 g, 0.122 mol) in DMF (150 ml) was added dropwise and the mixture heated and stirred at 95° for 24 h. After removing the DMF, the crude material was dissolved in CH₂Cl₂ (400 ml), washed with 2N NaOH (200 ml) and brine (200 ml). The org. layer was dried (MgSO₄) and evaporated: 55.5 g of a colored oil. Pure **25** (31.8 g, 70%) was obtained as an oil after chromatography on alumina with CH₂Cl₂. ¹H-NMR (CDCl₃): 1.6 (br., 6 CH₂CH₂CH₂); 2.38 (*s*, 3 CH₃); 3.15 (*m*, 9 CH₂N); 3.55 (*m*, 6 CH₂O); 4.55 (br., 3 OCHO); 7.3, 7.75 (*m*, 12 arom. H). ¹³C-NMR (CDCl₃): 143.1, 136.9, 129.6, 127.1 (arom. C); 98.9 (OCHO); 67.2, 62.3 (CH₂O); 54.3, 49.5, 46.7 (CH₂N); 30.8, 29.3, 28.7, 25.5, 23.4 (CH₂); 21.4 (CH₃); 19.7 (CH₂). Anal. calc. for C₅₇H₉₀N₄O₁₂S₃ (1119.55): C 61.15, H 8.10, N 5.00; found: C 60.96, H 8.30, N 5.30.

6.6'.6''-*Tritosyl-8.8'.8''*-*nitrilotri(6-azaoctanol)* (26). A mixture of 25 (28.8 g, 0.026 mol) and TsOH (4.91 g) in EtOH/H₂O 95:5 (350 ml) was refluxed for 43 h. After evaporation, the residue was taken up in CH₂Cl₂ (300 ml) washed with 2 \times NaOH (150 ml), brine (150 ml), and dried (MgSO₄). Evaporation of CH₂Cl₂ left 20 g of an oil. Pure 26 (15.66 g, 70%) was obtained as an oil after chromatography on silica gel with 1 to 3% MeOH/CH₂Cl₂. ¹H-NMR (CDCl₃): 1.45 (br., 3 CH₂CH₂CH₂); 1.95 (br., 3 OH); 2.42 (*s*, 3 CH₃); 2.8 (br. *m*, 3 CH₂N); 3.15 (br. *m*, 6 CH₂NTs); 3.60 (*m*, 3 CH₂O); 7.3, 7.75 (*m*, 12 arom. H). ¹³C-NMR (CDCl₃): 143.3, 136.7, 129.7, 127.2 (arom. C); 62.4 (CH₂OH); 54.5, 49.5, 47.0 (CH₂N); 32.1, 28.5, 22.9 (CH₂); 21.4 (CH₃). Anal. calc. for C₄₂H₆₆N₄O₉S₃ (867.19): C 58.17, H 7.67, N 6.46; found: C 58.27, H 7.48, N 6.38.

6,6',6''-*Tritosyl-8,8',8''*-*nitrilotri(6-azaoctyl) Tris(methanesulfonate)* (**27**) was prepared like **24**, from **26** (10.79 g, 0.0124 mol) in dry CH₂Cl₂ (200 ml), Et₃N (10.5 ml), and MsCl (3.2 ml) in dry CH₂Cl₂ (50 ml; added within 40 min). The oily **27** (13 g, 95%) was used without further purification for the following step. ¹H-NMR (CDCl₃): 1.45 (br., 3 CH₂CH₂CH₂); 2.4 (*s*, 3 *CH*₃); 3.0 (br. 9 CH₂N, 3 CH₃); 4.15 (*m*, 3 *CH*₂O); 7.3, 7.72 (*m*, 12 arom. H). ¹³C-NMR (CDCl₃): 143.4, 136.7, 129.8, 127.1 (arom. C); 69.8 (CH₂O); 54.3, 49.3, 47.0 (CH₂N); 37.4 (CH₃); 28.6, 28.2, 22.6 (CH₂); 21.4 (CH₃). Anal. calc. for C₄₅H₇₂N₄O₁₅S₆ (1101.46): C 49.07, H 6.59, N 5.09; found: C 49.04, H 6.40, N 5.06.

4,10,16,22,27,33-Tosyl-1,4,10,13,16,22,27,33-octaazabicyclo[11.11.11]pentatriacontane (28). A mixture of 17 (7.11 g, 0.0117 mol), Cs₂CO₃ (38 g) and DMF (300 ml) was heated under Ar to 95°. To this stirred soln., 27 (12.86 g, 0.0117 mol) in DMF (200 ml) was added dropwise within 1 h. Heating was continued for 67 h. After removing the DMF, the crude material was dissolved in CH₂Cl₂ (500 ml), washing with 2N NaOH (150 ml) produced an emulsion which was dispersed by addition of brine. The org. layer was dried (MgSO₄) and evaporated leaving a viscous, colored oil. Pure 28 (7.6 g, 45%) was obtained as a white solid after chromatography on silica gel with 1% MeOH/CH₂Cl₂; and was recrystallized from CH₂Cl₂/EtOH, m.p. 130–132° (dec.). ¹H-NMR (CDCl₃): 1.45 (br., 3 CH₂CH₂CH₂); 2.4 (s, 6 CH₃); 3.15 (br., 18 CH₂N); 7.3, 7.75 (m, 24 arom. H). ¹³C-NMR (CDCl₃): 143.3, 136.3, 129.8, 127.3 (arom. C); 54.8, 50.2, 47.5 (CH₂N); 29.0 (CH₂CH₂N); 23.9 (CH₂); 21.5 (CH₃). MS: 1421 (M^+), 1264 ($M^+ - Ts$), 1110 ($M^+ - 2 Ts$), 955 ($M^+ - 3 Ts$). Anal. calc. for C₆₉H₉₆N₈O₁₂S₆·1.5 CH₂Cl₂ (1549.34): C 54.65, H 6.44, N 7.23; found: C 54.60, H 6.51, N 7.44.

1,4,10,13,16,22,27,33-Octaazabicyclo[11.11.11]pentatriacontane Octachloride (4.8 HCl). Compound **28** (5 g, 3.5 mmol), phenol (6 g), and 30% HBr/AcOH (250 ml) were heated to 90° for 20 h under a well ventilated hood. After cooling, the purple precipitate was filtered and washed with Et₂O (200 ml). The crude HBr salt was dissolved in H₂O and passed over *Dowex 1 × 8* resin (basic form) with H₂O/EtOH 1:1. The soln. was acidified to pH 1 with conc. HCl and evaporated. The solid obtained was dissolved in the minimum of H₂O and EtOH was added until the soln. became cloudy; **4**.8 HCl crystallized on standing (2.49 g, 90%), m.p. > 250°. ¹H-NMR (D₂O): 1.5–1.90 (br., 3 CH₂CH₂CH₂); 2.89, 3.16, 3.27 (br., 18 CH₂N). ¹³C-NMR (D₂O): 51.8, 49.1, 47.1 (CH₂N); 36.1 (CH₂CH₂N); 23.8 (CH₂). Anal. calc. for C₂₇H₆₈Cl₈N₈· EtOH · 2H₂O (870.61): C 40.00, H 9.03, N 12.87; found: C 39.88, H 9.00, N 12.67.

9-(Tetrahydro-2H-pyrane-2-yl)oxy-1-nonanol (29). A mixture of 1,9-nonanediol (60 g, 0.37 mol), THF (20 ml), and conc. HCl (15 drops) was stirred for 15 min. Then, 3,4-dihydro-2H-pyran (10.5 g, 0.12 mol) in THF (60 ml) was added dropwise within 30 min. The mixture was stirred at r.t. for 7 h. After evaporation, toluene (300 ml) was added and the mixture heated to 60° until it became homogeneous. The unreacted diol crystallized upon cooling to 4°. The solid was filtered, washed with toluene, and the combined filtrates were washed with H₂O (200 ml), dried (MgSO₄) and evaporated. Pure 29 was obtained as an oil after chromatography on silica gel with AcOEt/hexane 2:3. ¹H-NMR (CDCl₃): 1.50 (br., 10 CH₂); 3.60 (m, 3 CH₂O, OH); 4.60 (br., OCHO). ¹³C-NMR (CDCl₃): 98.7 (OCHO); 67.5, 62.4, 62.1 (CH₂O); 32.6, 30.6 (CH₂CH₂O); 29.3, 26.1, 25.7, 25.4, 19.50 (CH₂). Anal. calc. for C₁₄H₂₈O₃ (224.36): C 68.80, H 11.54; found: C 68.12, H 10.97.

9-[(Tetrahydro-2H-pyran-2-yl)oxy]nonyl Methanesulfonate (**30**) was prepared, like **24**, from **29** (5.86 g, 0.024 mol) in dry CH₂Cl₂ (60 ml), Et₃N (5 ml), and MsCl (2.04 ml) in dry CH₂Cl₂ (20 ml; added within 20 min; workup: washings with 50 ml each). The oily **30** (98%) was used without further purification for the following step. ¹H-NMR (CDCl₃): 1.50 (br., 10 CH₂); 3.05 (s, CH₃); 3.60 (m, 2 CH₂O); 4.25 (t, CH₂OMs); 4.60 (br., OCHO). ¹³C-NMR (CDCl₃): 98.7 (OCHO); 70.1, 67.4, 62.1 (CH₂O); 37.1 (CH₃), 30.7, 29.6, 29.2, 28.9, 26.1, 25.4, 25.2, 19.5 (CH₃).

N,N,N-*Tris[12-(tetrahydro-2*H-*pyran-2-yl)oxy-3-tosyl-3-azadodecyl]amine* (**31**). A soln. of the tris(sodium salt) of **17** (21.4 g, 0.031 mol), prepared as described in the above preparation of **19**, in DMF (200 ml) was heated at 95°. Then, **30** (30.9 g, 0.095 mol) in DMF (70 ml) was added dropwise, the mixture was heated and stirred at 95° for 29 h. After the soln. cooled to r.t., an oil separated upon addition of H₂O (200 ml). The supernatant was decanted and the oil taken up in CH₂Cl₂ (300 ml), washed with H₂O (200 ml), and dried (MgSO₄). Evaporation left 42.9 g of an oil. Compound **31** (26.31 g, 64%) was obtained as an oil after chromatography on alumina with 0.5% MeOH/CHCl₃. ¹H-NMR (CDCl₃): 1.50 (br., 30 CH₂); 2.45 (*s*, 3 CH₃); 3.4 (*m*, 9 CH₂N, 6 CH₂O); 4.6 (br., 3 OCHO); 7.3, 7.8 (*m*, 12 arom. H). ¹³C-NMR (CDCl₃): 143.2, 136.9, 129.7, 127.2 (arom. C); 98.9 (OCHO); 67.7, 62.4 (CH₂O); 54.4, 49.6, 46.7 (CH₂N), 30.8, 29.7, 29.4, 28.8, 26.7, 26.2, 25.5 (CH₂); 21.5 (CH₃); 19.75 (CH₂). Anal. calc. for C₆₉H₁₁₄N₄O₁₂S₃ (1287.81): C 64.34, H 8.92, N 4.35; found: C 64.12, H 9.05, N 4.10.

10,10',10"-Tritosyl-12,12',12"-nitrilotri(10-azadodecanol) (32). A mixture of 31 (9.24 g, 7.2 mmol), TsOH (1.37 g) in EtOH/H₂O 95:5 (100 ml) was refluxed for 14 h. After evaporation, the residue was taken in CH₂Cl₂ (250 ml), washed with H₂O (150 ml), and dried (MgSO₄). Evaporation left 7.76 g of an oil. Pure 32 (6 g, 80%) was obtained as an oil after chromatography on silica gel with 4 to 5% MeOH/CH₂Cl₂. ¹H-NMR (CDCl₃): 1.3 (br., 21 CH₂); 2.45 (s, 3 CH₃); 2.9 (m, 9 CH₂N, 3 OH); 3.6 (t, 3 CH₂O); 7.3, 7.8 (m, 12 arom. H). ¹³C-NMR (CDCl₃): 143.7, 136.8, 129.8, 127.2 (arom. C); 62.9 (CH₂OH); 54.4, 49.6, 46.7 (CH₂N); 32.7, 29.4, 29.3, 29.2, 28.8, 26.6, 25.7 (CH₂); 21.5 (CH₃). Anal. calc. for C₅₄H₉₀N₄O₉S₃ (1035.46): C 62.63, H 8.76, N 5.41; found: C 62.39, H 8.78, N 5.31.

10,10',10"-Tritosyl-12,12',12"-nitrilotri(10-azadodecyl) Tris(methanesulfonate) (33) was prepared, like 24, from 32 (4.50 g, 4.3 mmol) in dry CH₂Cl₂ (70 ml), Et₃N (3 ml), and MsCl (1.11 ml) in dry CH₂Cl₂ (20 ml; added within 20 min; workup: washings with 50 ml each). The oily 33 (5.3 g, 96%) was used without further purification for the following step. ¹H-NMR (CDCl₃): 1.3 (br., 21 CH₂); 2.45 (s, 3 CH₃); 3.0 (br., 9 CH₂N, 3 CH₃); 4.25 (t, 3 CH₂O); 7.3, 7.8 (m, 12 arom. H). ¹³C-NMR (CDCl₃): 143.7, 136.8, 129.9, 127.2 (arom. C); 70.3 (CH₂O); 54.0, 49.8, 46.6 (CH₂N); 37.3 (CH₃); 29.0, 28.9, 28.8, 28.6, 26.5, 25.3 (CH₂); 21.5 (CH₃). Anal. calc. for C₅₇H₉₆N₄O₁₅S₆·CH₂Cl₂ (1354.65): C 51.42, H 7.29, N 4.13; found: C 51.93, H 7.20, N 4.43.

4,14,20,30,35,45-Hexatosyl-1,4,14,17,20,30,35,45-octaazabicyclo[15.15.15]heptatetracontane (**34**). A mixture of **17** (2.39 g, 3.9 mmol), Cs₂CO₃ (11.55 g), and DMF (100 ml) was heated under Ar to 95°. Then, **33** (5 g, 3.9 mmol) in DMF (60 ml) was added dropwise within 30 min under stirring. Heating was continued for 48 h. After removing the DMF, the crude material was dissolved in CH₂Cl₂ (250 ml). Washing with 2N NaOH (100 ml) produced an emulsion which was dispersed by addition of brine. The aq. layer was extracted with further portions of CH₂Cl₂ (2 × 100 ml), and the org. layers were combined and dried (MgSO₄). Evaporation left 6.67 g of a solid. Pure **34** (1.43 g, 23 %) was obtained as a white foam after chromatography on alumina 1% MeOH/CH₂Cl₂. ¹H-NMR (CDCl₃): 1.3 (br., 21 CH₂); 2.4 (*s*, 6 CH₃); 3.1 (br. 18 CH₂N); 7.3, 7.8 (*m*, 24 arom. H). ¹³C-NMR (CDCl₃): 143.2, 136.4, 129.7, 127.2 (arom. C); 54.5, 49.9, 47.1 (CH₂N); 29.2, 28.9, 26.5 (CH₂); 21.5 (CH₃). MS: 1590 (*M* ⁺), 1434 (*M* ⁺ - Ts), 1278 (*M* ⁺ - 2 Ts), 1123 (*M* ⁺ - 3 Ts), 967 (*M* ⁺ - 4 Ts), 811 (*M* ⁺ - 5 Ts). Anal. calc. for C₈₁H₁₂₀N₈O₁₂S₆ (1590.18): C 61.17, H 7.60, N 7.04; found: C 61.12, H 7.44, N 7.24.

1,4,14,17,20,30,35,45-Octaazabicyclo[15.15.15]heptatetracontane Octa(p-toluenesulfonate) (5 \cdot 8 TsOH). Compound 34 (2.25 g, 1.4 mmol), phenol (5 g), and 33 % HBr/AcOH (150 ml) were heated to 90° for 16 h under a well ventilated hood. After cooling, the purple precipitate was filtered and washed with Et₂O (70 ml). The crude HBr salt was dissolved in H₂O and passed over *Dowex 1* × 8 resin (basic form) with H₂O/EtOH 1:1. After evaporation, TsOH 1.24 g was added. The mixture was dissolved in EtOH, and 5 \cdot 8 TsOH was precipitated by addition of Et₂O (2.45 g, 85%), m.p. 150° (dec.). ¹³C-NMR (CD₃OD): 143.5, 142.5, 130.4, 127.3 (arom. C); 51.5, 50.0, 46.6 (CH₂N); 29.5, 29.0, 27.0 (CH₂); 21.6 (CH₃). Anal. calc. for C₉₅H₁₄₈N₈O₂₄S₈ (2042.67): C 55.85, H 7.30, N 5.48; found: C 55.37, H 7.90, N 6.01.

REFERENCES

- G.W. Gokel, S.H. Korzeniowski, in 'Macrocyclic Polyether Syntheses', Springer-Verlag, Berlin-Heidelberg-New York, 1982.
- [2] L. Rossa, F. Vögtle, Topics in Current Chemistry 1983, 113, 1.
- [3] J. M. Lehn, Structure and Bonding 1973, 16, 1.
- [4] H.E. Simmons, C.H. Park, J. Am. Chem. Soc. 1968, 90, 2428.
- [5] B. Dietrich, J. M. Lehn, J. P. Sauvage, Tetrahedron Lett. 1969, 2885.
- [6] B. Dietrich, J. M. Lehn, J. P. Sauvage, J. Blanzat, Tetrahedron 1973, 29, 1629.
- [7] H. Stetter, Chem. Ber. 1953, 86, 197; H. Stetter, E. E. Roos, ibid. 1954, 87, 566.
- [8] A. Feigenbaum, J.M. Lehn, Bull. Soc. Chim. Fr. 1973, 198.
- [9] J.E. Richman, T.J. Atkins, J. Am. Chem. Soc. 1974, 96, 2268.
- [10] J. M. Lehn, Annuaire du Collège de France 1982-83, 222.
- [11] A.J. Hubert, J. Chem. Soc. (C) 1967, 6.
- [12] F. Vögtle, Justus Liebigs Ann. Chem. 1970, 735, 193; F. Vögtle, R.G. Lichtenthaler, Angew. Chem. 1972, 84, 588; R.G. Lichtenthaler, F. Vögtle, Chem. Ber. 1973, 106, 1319.
- [13] F. Vögtle, P. Neumann, J. Chem. Soc., Chem. Commun. 1970, 1464.
- [14] M. Kanishi, J.I. Kunizaki, J. Inanaga, M. Yamaguchi, Bull. Chem. Soc. Jpn. 1981, 54, 3828.
- [15] A. Ricci, R. Danieli, S. Rossini, J. Chem. Soc., Perkin Trans. 1 1976, 1691.
- [16] F. Vögtle, G. Hohner, Angew. Chem. 1975, 87, 522.
- [17] P.L. Anelli, F. Montanari, S. Quici, J. Chem. Soc., Chem. Commun. 1983, 194.
- [18] a) G. R. Newkome, V. K. Majestic, F. R. Fronczek, J. L. Atwood, J. Am. Chem. Soc. 1979, 101, 1047; G. R. Newkome, V. K. Majestic, F. R. Fronczek, Tetrahedron Lett. 1981, 22, 3035; b) R. J. Geue, T. W. Hambley, J. M. Harrowfield, A. M. Sargeson, M. R. Snow, J. Am. Chem. Soc. 1984, 106, 5478, and references therein.
- [19] J. Gabard, A. Collet, J. Chem. Soc., Chem. Commun. 1981, 1137.
- [20] J. Canceill, A. Collet, J. Gabard, F. Kotzyba-Hibert, J.M. Lehn, Helv. Chim. Acta 1982, 65, 1894.
- [21] J. M. Lehn, S. H. Pine, E. I. Watanabe, A. K. Willard, J. Am. Chem. Soc. 1977, 99, 6766.
- [22] A.E. Martin, J.E. Bulkowski, J. Am. Chem. Soc. 1982, 104, 1434.
- [23] B.K. Vriesema, J. Buter, R.M. Kellogg, J. Org. Chem. 1984, 49, 110; W.H. Kruizinga, R.M. Kellogg, J. Am. Chem. Soc. 1981, 103, 5183; B. Klieser, L. Rossa, F. Vögtle, Kontakte Merck (Darmstadt) 1984, 3.
- [24] A.P. Terent'ev, K.I. Chursina, A.N. Kost, Zh. Obshch. Khim. (J. Gen. Chem.) 1950, 20, 1073.
- [25] R.F. Nystrom, J. Am. Chem. Soc. 1955, 77, 2544.
- [26] H.R. Snyder, R.E. Heckert, J. Am. Chem. Soc. 1952, 74, 2006.
- [27] H.C. Brown, W. Korytnyk, J. Am. Chem. Soc. 1960, 82, 3866.
- [28] D.B. Hope, K.C. Horncastle, J. Chem. Soc. (C) 1966, 1098.
- [29] W. Gauss, P. Moser, G. Schwarzenbach, Helv. Chim. Acta 1952, 35, 2359; A.E. Martin, T.M. Ford, J.E. Bulkowski, J. Org. Chem. 1982, 47, 412.
- [30] G.F. Woods, D.N. Kramer, J. Am. Chem. Soc. 1947, 69, 2246.
- [31] W.G. Dauben, H.L. Bradlow, J. Am. Chem. Soc. 1952, 74, 559.
- [32] A.E. Martin, J.E. Bulkowski, J. Org. Chem. 1982, 47, 415.
- [33] J.M. Lehn, F. Montavon, Helv. Chim. Acta 1976, 59, 1566.
- [34] B. Dietrich, M. W. Hosseini, J. M. Lehn, R. B. Sessions, J. Am. Chem. Soc. 1981, 103, 1282; Helv. Chim. Acta 1983, 66, 1262.
- [35] R.J. Motekaitis, A.E. Martell, B. Dietrich, J.M. Lehn, Inorg. Chem. 1984, 23, 1588.
- [36] J. M. Lehn, E. Sonveaux, A.K. Willard, J. Am. Chem. Soc. 1978, 100, 4914; B. Dietrich, J. Guilhem, J.M. Lehn, C. Pascard, E. Sonveaux, Helv. Chim. Acta 1984, 67, 91.
- [37] M.W. Hosseini, Thèse de Doctorat d'Etat, Université Louis Pasteur, 1983.
- [38] R.H. Mizzoni, M.A. Hennessey, C.R. Scholz, J. Am. Chem. Soc. 1954, 76, 2414.